3

Graph Theoretic Formulation of
Network Equations

Ip Chapter 2 we introduced the simplest methods for formulating network equa-
tions. The two methods considered are limited in the types of ideal elements
that can be included. More advanced formulation methods without restrictions
on the type of circuit elements will be given in Chapter 4. They require at least
an elementary knowledge of graph theory. '

G.raph theory is a broad, rapidly growing mathematical discipline with many
applications in engineering and computer science. Our objective in this book is
tq develop computer methods for the formulation, analysis, and design of elec-
trical networks. For this reason, we will restrict the presentation of graph con-
cepts to the material suitable for this application. The motivation for the use of
a graph is.evident if we consider any network with two terminal components
and its nodal formulation. Write the matrix equation; then replace each passive
element by some other passive element of a different type and write the equation
again. The entries of the matrices will differ but the structures will be the same;
the structure does not depend on elements, only on the interconnection. It is
Possible to deduce some general properties of networks by considering only the
Interconnections, and graph theory is the tool for doing so.

In Section 3.1 graph concepts are introduced, and the KCL and KVL are
stated. Section 3.2 introduces the incidence matrix and shows how Kirchhoff
laws can be written in terms of it. Sections 3.1, 3.2, and 3.7 are necessary for
a proper understanding of the material presented in this book. The remaining
sections develop further material in graph theory and its application; they can
be skipped at the first reading.
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Section 3.3 introduces the concept of the tree and cotree and discusses the
cutset and loopset matrices. Orthogonality relationships of these matrices are
demonstrated in Section 3.4, while Section 3.5 shows that independent vari-
ables in the network are tree voltages and cotree currents.

So far, the discussion has not distinguished between sources and other ele-
ments. The handling of independent sources is described in Section 3.6. The
topological formulation of the nodal and loop equations is discussed in Sections
3.7 and 3.8. Finally, the state variable formulation is explained briefly on net-
works containing R, G, L, and C elements, as well as both types of independent
sources. 7

The topological relations discussed in the first six sections of this chapter are
valid for linear as well as nonlinear networks. For this reason, lowercase sym-
bols for voltages and currents will be used. In the remaining sections, the net-
work equations of linear, lumped, time-invariant networks will be considered
in the Laplace transform domain and uppercase symbols will be used.

3.1. KVL, KCL, AND ORIENTED GRAPHS

Let us replace each two-terminal element by a line segment called an edge. The
edges will represent the interconnections or fopology of the network. Assign
distinct numbers to the nodes of the network and the same numbers to the cor-
responding interconnection points of the edges. The node numbers will be placed
within circles to distinguish them from the numbering of the elements in the
network or the edges in the graph.

Formulations of network equations are based on the fundamental laws stated
first by Kirchhoff. The Kirchhoff voltage law (KVL) states that the sum of volt-
age drops around any loop is zero at any instant. The Kirchhoff current law
(KCL) was stated in a restricted form in Chapter 2: the sum of currents flowing
away from a node is zero at any moment.

The KCL can be generalized as illustrated with the help of Fig. 3.1.1. Let
the network N be partitioned internally into two subnetworks N,, N,, joined by

R RN ;
| | !

|
' - |
| - |
| N1 ) N2 |
. il l
I T ]
: | |
[ f\ll _______ J

Fig. 3.1.1.  Generalization of the KCL.
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(a) (b)

Fig. 3.1.2.  Voltage and current sources and their graphs.

a number of interconnections. The sum of all currents in these connections must
be zero. The connections separate the two parts or ‘‘cut’’ the network. This
will be true for any other set of connections in the network. We may choose
only one (any) node as N,, with the rest of the network being considered in N,,
and obtain the original version of the KCL. We restate the KCL in the following
form:

In any cut which separates the network into two parts, the sum of currents
in the cut edges is zero.

In the graph representation of a network we replace each two-terminal ele-
. ment by an edge. An orientation will be associated with each edge and we can,
for simplicity, assume that for nonsource branches this is the direction of the
current flowing through the element. In agreement with Fig. 1.1.1, the orien-
tation will imply that the node from which the current flows is at a higher volt-
age than the node to which it flows. Since the voltages in the network are not
known before the solution, orientations of the graph edges are completely arbi-
trary for passive elements.

For current sources, the direction of the current is obvious from its symbol.
For the voltage source, we will assign the orientation of the edge as being from
+ to —. The graphs for the sources are given in Fig. 3.1.2. Once all two-
terminal elements have been replaced by their oriented edges, there is no reason
to distinguish between the sources and other two-terminal elements; all the
properties will be derived without reference to the types of elements represented
by the edges.

3.2. INCIDENCE MATRIX

Consider the stimple network in Fig. 3.2.1(a) and its oriented graph in Fig.
3.2.1(b). Let us write the KCL equations with the edge orientations as indi-
cated. A current flowing away from a node will be considered as positive. Then

1: _i]+i4+i6=0
2: —lz_l4+15:0

3: ~i3—i5—i6=0‘
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(a)
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(b)

Fig. 3.2.1. A simple network and its oriented graph.

This can be written in matrix form:
Al = 0. (3.2.1)
The matrix A is called the incidence matrix and, for the example,

edges—>

nodes 1 -1 0 0 1 0 1
A= l 2 0 -1 0 —1 1 0]l. (3.2.2)
3 0 0 -1 0 -1 -1

It has n rows and b columns, n being the number of ungrounded nodes and b
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the number of edges in the graph. The rank of this matrix is 3, as the submatrix
formed by the first three rows and columns is nonsingular. It can be proven that
for a general connected network

Rank of A = n. (3.2.3)

»»The voltages in the network are also related through the incidence matrix.
Denote the voltage of the ith node with respect to the reference node as v, ;.
Since in our notation the orientation of the edge coincides with the current flow
through the element, the node from which the edge leaves will be at a higher
potential than the node to which it points. For instance, for the fourth edge in
Fig. 3.2.1(b), we will have

Uy = Up,y = Up2
which, in terms of all the nodal variables, is written as

Un,l
ve=[1 -1 01| v,

vn, 3

Similarly, for the fifth edge we get the voltage relationship

vs=00 1 —1]| v,

and so on. Writing one such equation for each edge, we arrive at

[vf -1 0 07
U 0 —1 0
vn]
U3 0 0 -1 '
= v, . 2.
v, 1 -1 o0 2 (3.2.4)
Up,3
Us 0 1 -1 !
_UGJ | 1 0 —1]
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Comparing the matrix in (3.2.4) with the matrix in (3.2.2), we see that it is the
transpose of A, A’. The result can be summarized through the matrix equation

v=A'v,. (3.2.5)

Equations (3.2.1) and (3.2.5) represent the KCL and KVL relationships for a
network, respectively. They will be used repeatedly in subsequent chapters.

3.3. CUTSET AND LOOPSET MATRICES

In order to derive additional properties of oriented graphs, consider Fig. 3.3.1.
It shows the same graph discussed in Section 3.2, with some additional features.
Recall now the generalized version of the KCL. Three more equations can be
written by invoking this form of the law: cut C4 intersects the edges 6, 4, 2, 3;
Cs intersects the edges 6, 5, 2, 1; and Cg intersects 1, 4, 5, 3. Selecting the
indicated directions with respect to the cut as being positive, we get

0

CS: _il - iz + is + i6 = O
CG: i] + i3 - i4 + i5 = O
These equations can be added to the set of equations obtained in Section 3.2.

The question arises as to which equations and how many need to be retained to
form an independent set. One way of choosing them is by means of the inci-

Fig. 3.3.1.  Oriented graph with three additional cuts.
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dence matrix. It can also be done in a systematic way by defining a tree and a
cotree.

A tree of a connected graph is a connected subgraph containing all the nodes
of the original network but no closed path. A tree of an n + 1 node-connected
network has n edges.

Any edge in the tree is called a twig. The remaining edges, not included in
the tree, form a cotree, and the edges of a cotree are called chords.

A cut with respect to a given tree edge of a graph is a cut going through only
one twig of the tree and as many chords of the cotree as are necessary to divide
the graph into two separate parts. Since there are n twigs of a tree, there will
be n basic cuts. The set of branches included in any cut is called the cutset.

The numbering of the elements and of the nodes is an entirely arbitrary pro-
cedure which can in no way alter the behavior of the network. Therefore it is
merely a matter of convenience how the various elements are numbered. Many
considerations become quite simple if we apply the following rules for the
numbering:

1. Assign orientations to the edges.

2. Select a tree.

3. Assign consecutive integers starting from 1 to the twigs and continue num-
bering the chords.

Figure 3.3.2 indicates one such choice. The edges 1, 2, 3 form the tree of the
graph (twigs), and the edges 4, 5, 6 are the chords of the cotree.

To obtain the basic cutsets, we cut one twig and as many chords as are
necessary to obtain two disconnected subgraphs. The cuts are indicated in the
figure, numbered with subscripts corresponding to the number of the twig they

a A
NV,

Fig. 3.3.2.  Oriented graph with a tree.
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cut. Each cut is assigned the same orientation as its twig. This is indicated on
the figure by arrows. Then

ih —iy—ig=20

iz + i4 - i5 = O

i3 + i5 + i6 = 0.
In matrix form, this is

Qi = 0. (3.3.1)

where

basic 1 [1 0 0{—-1 O -1
Q= cuts
l 3 0 01

3.3.2)

=)
—
=)
i
|
—_
=)

is called the basic cutset matrix.

Before making any statements about the form of the Q matrix, let us look at
the selection of another tree and the choice of new edge directions for the same
network. Consider the graph in Fig. 3.3.3, where the tree is indicated by solid
lines and where we followed the numbering suggestions given above. We get

Fig. 3.3.3.  Oriented graph with another tree.
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123 4 56
1100} 0 -11
Q=2 1 of-1 -1 1
3 loo1i-1 =10

In both cases the submatrix corresponding to the tree is a unit matrix and is
nonsingular.
The Q matrix can be partitioned as follows:

Q=1Q Q] o @1 Q] (3.3.3)

where the subscript ¢ stands for the tree (or twigs), the subscript ¢ for cotree (or
chords), and 1 denotes an identity matrix.

The KVL leads to another description of the topological properties of net-
works. It states that the sum of voltages around any closed path is equal to zero.
In our discussion, we will restrict the path to a simple loop, with no crossings
and no cases where the path goes two or more times through the same edge or
node.

With these restrictions, we can define the following voltage loops in the
graph of Fig. 3.3.2:

v, — v, tu, =0
v, —v3+vs=0
v4+v5—rv6=0
vy —v3+v5=0
Vg — U3 — Uy +06=0
VI_V2—115+116=0
v, —v3+uv,tovs=0

and we must decide which of these equations and how many have to be retained
to form an independent set. We will apply the concept of the tree and define
the loops on the basis of the selected tree.

Consider one chord only and place it in its position in the subgraph formed
by the tree. The chord, together with twigs of the tree, will form a loop. In the
next step, take the first chord out and place another one in its proper position.
This will form another loop. Doing this for all chords, we get a set of loops.
Since the network has b edges and n + 1 nodes, the tree has n edges and there
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remain b — n edges to form the chords of the cotree. Therefore, the number of
loops formed by the above procedure will be b — n. .

As before, the sequence in which this is done is arbitrary, as are the orien-
tations in which the loops are closed. Since there is such freedom of choice,
we propose a special way of numbering which will considerably simplify the
form of the resulting equations:

—

Apply all numbering steps as suggested before.
2. Take the chords in the sequence of their numbering and number the loops,

starting from 1. .
3. Assume the direction of the loop to be the direction of its chord.

Taking Fig. 3.3.2 with the choice of arrows and numbers as shown, we get
three loops:

v,—v, +u,=0
v, —vy+vs=0
v, — vy + vg = 0.
In matrix form this is
Bv=20 (3.3.4)
where B is called the basic loopset matrix. Its form is

edges —*

1 2 3456
1 [Tt -1 0i1 0O
B = %P l 0 1 -1{0 10 (3.3.5)
3 L1 o0 -1i00 1
We observe that the matrix can be partitioned as
B=[B B] or [B 1l (3.3.6)

Let us see again what happens if another tree and another choice of orientations

~ are used for the same network, provided that the recommended numbering pro-

cedure is maintained. Take the tree of Fig. 3.3.3, with the result
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edges —

1 23456
I T 0 1110 0]
loops !
B = 1 11010

3 1-1-10i001

Again, B has a unit submatrix belonging to the chord edges. This submatrix
determines the rank of B, which is 3 for our example, and, for a general con-
nected network,

Rank of B = b — n. (3.3.7)

EXAMPLE 3.3.1. Write the Q and B matrices for the graph in Fig. 3.3.4. Use
the tree formed by the first four edges:

1 000! 1 1 1
0100i-1 -1 o0

Q= !
0010 0 0 -1
o000 10 1 1
(=1 10 0i100

B=|-110 -1{01 0

-1 01 -1{0 0 1

. @E©

Fig. 3.3.4. A graph with a tree.
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3.4. ORTHOGONALITY RELATIONS FOR
THE Q@ AND B MATRICES

The cutset and loopset matrices are not independent, and a fundamental rela-
tionship holds. The proof can be found, for instance, in [1].
Arrange the columns of the cutset and loopset matrices in the same sequence

of edges; then

BQ' =0 (3.4.1)

T or

QB = 0. 3.4.2)

We will illustrate the validity of the law by considering the matrices (3.3.2)
and (3.3.5), written for the graph of Fig. 3.3.2:

Tl 0 17
-1 1 0
1 00-1 0 -1 000
: 0 -1 -1
QB =010 1 -1 0 =10 00
! 1 0 O :
001 0 1 1 000
' 0 1 0
[ 0 o 1

Important results follow from (3.4.1) or (3.4.2). Using the partitioned forms
(3.3.3) and (3.3.6)

1
, =B, +Q.=0

BQ' = [B, 1] [
or
B, = —-Q.. (3.4.3)

Equation (3.4.3) indicates that

B =[-Q. 1 (.4.4)

and
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Q=1 -B] (3.4.5)
which means that either the B or the Q matrix is sufficient for applications. As

an exercise, the reader may demonstrate the validity of (3.4.1) and (3.4.2) on
the Q and B matrices of Example 3.3.1.

3.5. INDEPENDENT CURRENTS AND
VOLTAGES

The results obtained in the last section will now be used to write the edge
voltages and currents in terms of the smaller set of independent voltages and
currents. Using the cutset matrix and (3.3.1),

Qi = 0. (3.5.1)
Here i is the vector of edge currents. Using the partitioning

1 QJ ['J — i, + Q4 = 0
1

c

or

i, = Q.. 3.5.2)

the twig currents are obtained in terms of chord currents. Since all currents in
the network are the union of twig and chord currents, we can write

L[5

The last step followed from (3.4.3). However, the last matrix is nothing but
the transpose of the matrix B (3.3.6); thus,

i=Bi. (3.5.3)
The chord currents should be considered as independent variables. Once they

are known, all the currents in the network are obtained by applying (3.5.3).
Now consider the KVL (3.3.4):

Bv =10 (3.5.4)
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where v is the vector of all edge voltages. Use the partitioning

A/

[B, l][ }=B,v,+vC:0

\£

from which
v. = —By, (3.5.5)

As in the case of the currents, all the edge voltages can be written as .

=[]l

The last step results from the use of (3.4.3). However, the matrix on the right-
hand side is nothing but Q’. Thus

v = Qv,. (3.5.6)

We conclude that twig voltages should be considered as independent voltages.
Once they are known, all edge voltages are obtained by applying (3.5.6).

3.6. INCORPORATING SOURCES INTO
GRAPH CONSIDERATIONS

In general, a network can be excited by voltage as well as current sources. The
question is: what is an advantageous way of numbering edges in such a case?
Equation (3.5.3) indicates that the chord currents are the independent vari-
ables. The current of an independent current source cannot be a dependent vari-
able. Thus we make sure that all current sources are placed in the cotree.
Similarly, (3.5.6) indicates that the twig voltages are the independent variables.
The voltage of the voltage source cannot be a dependent variable. Thus we must
make sure that all voltage sources are placed in the tree.

Our preferred numbering system resulted in unit matrices in the place of Q,
or B... In order to preserve this advantage, we will:

1. Represent the voltage sources as e;, e,, . . . , ¢; and place them in the tree

branches. .
2. Complete the tree by taking edges of passive elements and number them by
consecutive numbers, starting with 1.
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3. Continue numbering of the remaining edges corresponding to the passive
elements.
4. Number the current sources as j;, j,, . . . , Jme

The orientations of the sources will be as indicated in Fig. 3.1.2, while the
orientations of passive element edges are arbitrary. Whenever the sources are
considered explicitly, we will consider the matrices as being augmented and use
the subscript a.

EXAMPLE 3.6.1. Consider the network shown in Fig. 3.6.1. Write the Q matrix
by using the numbering on the figure and the suggestions given above.

e 123 4 5 6
14000 -1 0 0} o0
0 0{100 0 -1 -1 -1 @ o
a = E E =e ]
ofo1o 1 1 1 1| ! @
0i001 1 1 01} o0
2
—
J
—_—
——)—e

Fig. 3.6.1.  Network and its graph with a tree.
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@ |

Fig. 3.6.1.  (Continued)

3.7. TOPOLOGICAL FORMULATION OF
NODAL EQUATIONS

In order to introduce the formulation for the nodal equations, we will assume
that every voltage source has been converted into an equivalent current source

by the Thévenin-Norton transformation. . ‘
In the nodal formulation, every passive element is described by the form
Y,V, = I,. All these expressions can be combined as follows:

vab = Ib' (3.71)

For instance, for the network of Fig. 3.7.1(a), the constitutive equations are

FGI 7 FVI_ 1]
1/sL, v, L
1/sLs | |k

Gy el | &

sCs Vs I

sCs | Vel Lt
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Fig. 3.7.1. A network with three current sources and its oriented graph.

The graph for the network is shown in Fig. 3.7.1(b). To write the incidence
matrix, consider first the passive elements and then the sources. Thus:

123 4 5 6 J I, U
100 1 0 1
A,=]010~1 1 o0

001 0 -1 —1

-1 0 1

=
=
=
I
o
>
>
~
-

Here A, is the augmented incidence matrix. The KCL states that
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Al=0 (3.7.2)

Partition these equations in the form

[A A)] =0 (3.7.3)
Js

or
Al = —A;), 3.7.4)
where J, is the vector of known source currents. Substitute (3.7.1) for I,
AY,V, = —A,;l,. (3.7.5)
The KVL is expressed by (3.2.5) for the whole angmented matrix as follows:
V =A,V,. (3.7.6)

Again partition the matrix Al:

MEM
= v, (3.7.7)
v, A

where V), are the voltages across the sources. Rewrite (3.7.7) as

V, = AV, (3.7.8)
VJ = A_I]V" (37.9)

The voltages across the current sources will be determined from (3.7.9) after
the node voltages V, are found. Insert (3.7.8) into (3.7.5):

AYbA,V" = _AJJb (3710)
or
YV, =J. (3.7.11)

The product
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Y = AY A’ (3.7.12)
is the nodal admittance matrix discussed in Chapter 2. The right-hand side

J. = —Asd (3.7.13)

is the nodal current source vector of the nodal formulation.

ExaMpLE 3.7.1. Show on the example of Fig. 3.7.1 and on the graph given
there that (3.7.10) is equivalent to the nodal formulation of Chapter 2.

The matrices A, and Y, were already written in this section. The product
AY,A'is

G] + G4 + SC6 —G4 _SC6
Y = -G, G, + sCs + 1/sL, —sCs
—5Cg —sCs §Cs + sCg + 1/sL,

For the sources the product is

1 0 _1 Jl Jl _"J3
J,=—-AJ,=|00 of|L]|= 0
01 1]LlJ I, + J,

Both results agree with direct analysis.

A similar result can be obtained by using the Q matrix. The reader may
derive the equations as an exercise. A disadvantage of using the basic cutsets
is the fact that the resulting admittance matrix will often be dense, in addition
to the effort required to obtain Q.

3.8. TOPOLOGICAL FORMULATION OF
LOOP EQUATIONS

Formulation of loop equations is simple if we assume that all current sources
have been transformed into voltage sources. In the loop formulation each pas-
sive element is described in the form Z,/, = V,, and the expressions can be
written compactly as
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7,1, = V,. (3.8.1)

For instance, for the network of Fig. 3.8.1 the constitutive equations have the
form

Rl Il V‘
1/SC2 12 V2
' 1/sCs L Vs
SL4 14 V4
SLS 7 15 V5
1/ 5Cs | _16_ _V6_
6
i1
L
2 . 3
0—| I——" N
E, Es
: _
4
+ 5
Eq

Fig. 3.8.1. A network with three voltage sources and its oriented graph.
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The graph of the network is shown as well. The numbering of the branches was
done in agreement with Section 3.6. The B, matrix is

E, E E 1 2 3456
1 10}{-1 1 0100
B,=|-1 11}-1 1 1010
i 0 -1 -1 00

= [B: B].

—

The subscript a indicates augmentation by sources. The KVL states that
B,V = 0. 3.8.2)

Partition these equations in the form

E,
[B; BJ [V } =0 (3.8.3)

b

or
BV, = —B;E, (3.8.9)
where E, is the vector of known source voltages. Substitute (3.8.1) for V,:
BZ,1, = —B:E,. (3.8.5)
The KCL in terms of the B matrix was expressed by (3.5.3):
I=B.I. (3.8.6)

Partition this matrix equation as follows:

-
Ib - B c (387)

where I; are the voltage source currents. Rewrite (3.8.7) as

Iz = Bl (3.8.8)
I, = B'L. (3.8.9)
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Once the currents I, are determined, the voltage source currents Iz will be found
from (3.8.8). Insert (3.8.9) into (3.8.5):

BZ,B'I. = —B:E, (3.8.10)
or
71, = E,. (3.8.11)
The product
Z = BZ,B (3.8.12)

is the impedance matrix in the loop formulation and

represents the loop voltages of the equation. Note that this formulation is not
identical to the mesh formulation introduced in Chapter 2. The loops are formed
here by means of chords. Its advantage, compared with the mesh method, is
the fact that it is applicable to planar as well as nonplanar networks. Its disad-
vantage is that the Z matrix is often dense.

EXAMPLE 3.8.1. Derive the matrix Z and the source vector E, for the network
of Fig. 3.8.1. Use the graph and tree given in the figure.
The product BZ, B’ is

R, + 1/sC, + sLy R, + 1/sC, —1/sC,
Z= R, + 1/sC, R, + 1/sC, + 1/sC; + sLs —1/5C, — 1/sCy
-1/sC, =1/sC, — 1/5Cs 1/sC, + 1/sC; + 1/sCq

The source vector is
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1 _1 O E] E| - E2
El = —BEEb = 1 -1 -1 E2 = El — E2 - E3
0 1 0]LE E,

3.9. STATE VARIABLE FORMULATION

In the state variable formulation, all algebraic equations are eliminated and the
network is described by a system of first-order differential equations. The for-
mulation is used extensively in theoretical studies, as many theorems from
mathematics are directly applicable. In the 1960s, the formulation had some
computational justification as well, because good computer codes for solving
sets of first-order differential equations were becoming available. The disad-
vantage of this formulation lies in the complicated steps required to eliminate
the algebraic equations and in the fact that the matrices involved are often dense.
Algorithms that simultaneously handle sets of differential and algebraic equa-
tions are now available. Since the disadvantages of the state variable formula-
tion far outweigh its advantages, it is no longer used in computer applications.
For this reason, we will restrict our discussion to simple R, L, C, and G ele-
ments and independent sources.
The normal form of the state equations in the Laplace transform domain is

sX, ay 4 ot gy X,
sX, _ | 4 a2 ap X,
SXn a, Gy T Gy, Xn
by by bim W,
by by by W,
+ . . . . . 3.9.1)
bnl bn2 bnm Wm
or
sX = AX + BW. 3.9.2)

The standard notation for state variable matrices is used in (3.9.2), where A
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and B are nor the incidence and loopset matrices. The size of Aisn X n (n
being the number of states), the size of B is n X m, and W is the vector of
independent sources. The normal form of the state equations is usually accom-
panied by a set of output equations:

Y = CX + DW (3.9.3)

Y being a vector of length & if there are k outputs. C has the dimension k¥ X n
and D is & X m. Very often at an intermediate stage of the formulation we get
an equation of the form

sMX = AX + BW - (3.9.4)

where M may be a singular matrix. In this section we will indicate the methods
for obtaining (3.9.4). Further processing is required to obtain (3.9.2).

Let the network be composed of resistors, capacitors, and inductors. We
know that the voltage across an inductor is given by V = sLI, whereas the
current through the capacitor is given by I = sCV. Since (3.9.2) has sX on the
left side, we wish to retain the voltages across the capacitors and the currents
through inductors as elements of the vector sX.

It was indicated in Section 3.5 that the twig voltages and chord currents are
independent variables. Thus selecting a tree containing all capacitors while all
inductors are placed in the cotree solves our problem if such a choice is phys-
ically possible.

Further, the voltage of an independent voltage source is specified and must
be incorporated into the tree. Similarly, the current of an independent current
source is given, and it must be taken into the cotree. In the selection of a tree
(called a normal tree), it is best to proceed with the numbering as follows:

Take all independent voltage sources into the tree.

Take as many capacitors as possible into the tree.

Continue taking as many resistors or conductors into the tree as possible.
Complete the tree by taking as many inductors as needed.

Number the capacitors in the cotree.

Number the resistors or conductors in the cotree.

Number the inductors in the cotree.

Number the independent current sources in the cotree.

PN E LD

To solve the problem, write the Q matrix for the network graph. It will have

~the form [1 Q.]. The KCL will have the form (3.5.2), the KVL the form

(3.5.5). Writing them in one matrix equation and using (3.4.3):
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MEPFININ
= . (3.9.5)
\L Q. 0 JLIL

This is the desired arrangement of variables. On the right side we have the
independent twig voltages and chord currents; the dependent variables are on
the left side. Equation (3.9.5) is the basis for the state variable formulation.

In the next step, constitutive equations are inserted into (3.9.5) and the matrix
equation is rewritten as a set of equations. Finally, only the twig capacitor
voltages and chord inductor currents are retained, the other equations being
eliminated. This provides a set of equations which can be written in the form
(3.9.4).

The steps of the state variable formulation will be explained by means of an
example.

ExamPLE 3.9.1. Find the state variable formulation for the network shown in
Fig. 3.9.1. Use the tree indicated in the figure by thicker lines.

The state variables are known; they are the twig capacitor voltages and the
chord inductor current, V,, V,, I;,. The Q matrix is

100} 1 0 00
Q=|0o10i-1 1 10|=01 QJ
001i 0 -1 -1 1
(a) . (b)
6
® % © ® o2 O ®

Fig. 3.9.1.  Example of state variable formulation.

Equation (3.9.5) becomes
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Ie [0 0 0i-1 0 O Ve
2 o 0 of1-1-1 oflw
L 0 0 0{ 0 1 1 -1 v,
mi=]1 -1 of 0 o o oll&
v, 0 1 -1: 0 0 0 O0]f]1
Vs 0 1 -1, 0 0 0 0]]|I
v| |o o 1i0 0o o of |k

This matrix equation expresses all mutual relations between the currents and
voltages. The coupling is provided by the branch constitutive equations, which
are as follows:

Vg=E I, G,V

I] = SCl V] 15 = SCSVS

Aol
i

= SC2 V2 V6 = SL616'

I = Gy

Inserting the constitutive equations into the matrix equation above, we get

1 ] [o 0o o0 -1 0 0O o‘_Ej
sCV, 0 0 0 1 -1 -1 0 v,
sCy ¥, 0 0 0 0 1 1 -1 v,
v, |=l1 -1 0o o o o o G, V,
v, 0 1 -1 0 0 0 O G,V,
Vs 0 1 -1 0 0 0 O0f]scvs

| sLels | [0 0 1 0 o0 0 Oof| [k |

For hand calculations, the matrix equation is rewritten as a set of equations:
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IE = _G3V3
SCl V] = G3V3 - G4V4 - SC5V5

SCsz = G4V4 + SC5V5 - 16

V,=E—V,
V=V, -V,
Vs=V, -V,

sLels = Vs

Now eliminate all variables except V|, V,, and Iq. 'The result, in the form of
(3.9.4), is

Cl + CS _C5 0 Vl

h) _C5 Cz + C5 0 V2
0 0 Lol LI
—G,+G) G, 0]V G,
= G, G, -1||w|+]o|E
0 1 ollrl Lo

M is nonsingular and can be inverted to obtain the normal form.

PROBLEMS

P.3.1. Draw the oriented graphs for the networks shown in Fig. P.3.1. Use the
convention of Fig. 3.1.2 for the sources and assign arbitrary orientations
to the edges of all other elements. Write the incidence matrices A.

Cz
T
® | ) t ®
| Q00
+ c, L
3 R, Ra o
Fig. P.3.1.
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® L2 E ®
2 -
— 0
JT Ly Ly R

— 000 *
+ Ry | L 1

T °T

Fig. P.3.1.  (Continued)

P.3.2. For the networks shown in Fig. P.3.1, write the Q and B matrices by
using the graphs from Problem P.3.1. Select the trees.

P.3.3. Show the validity of the orthogonality relations by using the Q and B
matrices derived in Problem P.3.2.

P.3.4. Transform the voltage sources in Fig. P.3.1 into equivalent current
sources, draw appropriate graphs, and apply the topological formulation
of nodal equations (Section 3.7) to these networks. ‘

P.3.5. Transform the current sources in Fig. P.3.1 into equivalent voltage
sources, draw appropriate graphs, and apply the topological formulation
of loop equations (Section 3.8) to these' networks.

P.3.6. Apply the state variable formulation to the networks in Fig. P.3.1 by
using the Q matrices obtained in Problem P.3.2.
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General Formulation Methods

The formulation methods introduced in Chapter 2 are quite efficient and have
been used successfully in many applications, but they cannot handle all ideal
elements. To avoid the restrictions, general formulation methods are introduced
in this chapter. In Section 4.1, the tableau formulation [1] is discussed. Here
all branch currents, all branch voltages, and all nodal voltages are retained as
unknown variables of the problem. Thus the formulation is most general (every-
thing is available after the solution) but leads to large system matrices.

Section 4.2 indicates that blocks of variables can be eliminated and, under
special circumstances, this naturally leads to the nodal formulation. However,
if we wish to retain the ability to handle all types of network elements, complete
block elimination is not possible and the modified nodal formulation [2] must
be used. This can be done using graphs, as discussed in Section 4.3, or without
graphs, as shown in Section 4.4.

The modified nodal formulations given in Sections 4.3 and 4.4 are efficient
but still retain many redundant variables. It is demonstrated in Section 4.5 that
active networks can be analyzed extremely efficiently if we follow a set of spe-
cial rules. The rules given there cannot be easily used for computer solutions,
and a systematic method must be found. The basis for eliminating redundant
variables is the use of separate voltage and current graphs, discussed in Section
4.6, where they are applied to the tableau formulation. The graphs are a rep-
resentation of the interconnections and, as such, can be replaced by tables which
can be used for automated formulation. Such tabular representation is given in
Section 4.7. With this background, the two-graph modified nodal formulation
is developed in Section 4.8. Finally, Section 4.9 compares the various formu-
lations introduced in this chapter, and Section 4.10 gives an example.
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